TGF-β1 regulates TGF-β1 and FGF-2 mRNA expression during fibroblast wound healing
نویسندگان
چکیده
Aims: To evaluate the expression of transforming growth factor β1 (TGF-β1) and fibroblast growth factor 2 (FGF-2) mRNA in stromal cells in response to injury in the presence of either TGF-β1 or FGF-2. It has been shown previously that heparan sulfate proteoglycans and FGF-2 are present transiently during wound repair in vivo and that an increase in TGF-β1 mRNA is detected rapidly after injury. Methods: Primary corneal fibroblasts were cultured to confluency, serum starved, and linear wound(s) were made in medium containing TGF-β1 or FGF-2. TGF-β1 and FGF-2 mRNA expression were evaluated using both northern blot analysis and in situ hybridisation. Both dose dependent and time course experiments were performed. Whole eye organ culture experiments were also carried out and growth factor expression was assessed. Results: Injury and exogenous TGF-β1 increased TGF-β1 mRNA values. The increase in expression of FGF-2 mRNA was not detected until wound closure. In contrast, FGF-2 inhibited the expression of TGFβ1. TGF-β1 increased TGF-β1 mRNA stability but did not alter that of FGF-2. Migration assay data demonstrated that unstimulated stromal cells could be activated to migrate to specific growth factors. Conclusions: TGF-β1 specifically enhances cellular responsiveness, as shown by increased stability after injury and the acquisition of a migratory phenotype. These data suggest that there is an integral relation during wound repair between TGF-β1 and FGF-2.
منابع مشابه
RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells
AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 t...
متن کاملSimultaneous silencing of TGF-β1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis
Excessive skin scars due to elective operations or trauma represent a challenging clinical problem. Pathophysiology of hypertrophic scars entails a prolonged inflammatory and proliferative phase of wound healing. Over expression of TGF-β1 and COX-2 play key regulatory roles of the aberrant fibrogenic responses and proinflammatory mediators. When we silenced TGF-β1 and COX-2 expression simultane...
متن کاملDifferential effects of TGF-β1 and FGF-2 on SDF-1α expression in human periodontal ligament cells derived from deciduous teeth in vitro.
Stromal cell-derived factor (SDF)-1α has been reported to play a crucial role in stem cell homing and recruitment to injured sites. However, no information is available about its role in periodontal tissues. The aim of this in vitro study was to investigate the effects of basic fibroblast growth factor (FGF-2) and transforming growth factor (TGF)-β1 on SDF-1α expression in immortalized periodon...
متن کاملAssessment of expressions of Bcl-XL, b-FGF, Bmp-2, Caspase-3, PDGFR-α, Smad1 and TGF-β1 genes in a rat model of lung ischemia/reperfusion
Objective(s):Ischemia is described as organs and tissues are destitute of oxygen due to decreased arterial or venous blood flow. Many mechanisms play role in cell death happened as a consequence of a new blood flow is needed for both cell regeneration and to clean toxic metabolites during ischemia and later. Lung damage induced by ischemia/reperfusion (I/R) is a frequent problem in lung transpl...
متن کاملDehydroabietic acid reverses TNF-α-induced the activation of FOXO1 and suppression of TGF-β1/Smad signaling in human adult dermal fibroblasts.
Wound healing impairment is a well-documented phenomenon in clinical and experimental diabetes, and in diabetic wound healing impaired fibroblast has been linked to increased levels of tumor necrosis factor-α (TNF-α). A number of signaling pathways including TNF-α/forkhead box O1 (FOXO1) and transforming growth factor-β1 (TGF-β1)/Smads in fibroblasts appear to play a cardinal role in diabetic w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002